
Malware Family Classification via Residual
Prefetch Artifacts

Adam Duby
United States Military Academy

adam.duby@westpoint.edu

Teryl Taylor
IBM Research

terylt@ibm.com

Yanyan Zhuang
University of Colorado Colorado Springs

yzhuang@uccs.edu

Abstract—Automated malware classification assigns unknown
malware to known families. Most research in malware classifi-
cation assumes that the defender has access to the malware for
analysis. Unfortunately, malware can delete itself after execution.
As a result, analysts are only left with digital residue, such as
network logs or remnant artifacts of malware in memory or
on the file system. In this paper, a novel malware classification
method based on the Windows prefetch mechanism is presented
and evaluated, enabling analysts to classify malware without a
corresponding executable. The approach extracts features from
Windows prefetch files, a file system artifact that contains
historical process information such as loaded libraries and process
dependencies. Results show that classification using these features
with two different algorithms garnered F-Scores between 0.80 and
0.82, offering analysts a viable option for forensic analysis.

I. INTRODUCTION

Incident response analysts use forensic techniques to ana-
lyze malware-based attacks. Unfortunately, manually analyzing
malware is a costly and time consuming process that requires
expert domain knowledge. Timely analysis is critical to mit-
igate attacks and exfiltration. Hence, there is a push towards
automated malware classification techniques.

One of the popular malware classification techniques is to
identify an unknown malware sample by its malware family.
In order to do so, features from the malware are selected for
comparison against a labeled dataset. Such features can include
static information from the executable file (i.e, opcodes [22]
or file header information [23]) or behavioral information
extracted from a dynamic trace of the malware (i.e, API
calls [14]). These features are often combined with machine
learning techniques to classify a malware sample into a known
family [21], [24]. Much of the current research on the topic
assumes access to the original malware file. However, in
many cases, analysts investigate attacks where the malware
is no where to be found. For example, APT29, a threat group
attributed with the 2020 SolarWinds compromise, is known to
routinely delete its malware after completing a campaign [2].

Such self-deletion behavior forces analysts to find and
analyze residual forensic artifacts, which are digital residue
that may expose evidence about an attack [8]. For example,
network logs and packet captures can expose network-related
activities from an attack [19], while host-based artifacts can be

This work is supported in part by NSF grants OAC-2115134, OAC-1920462,
and Colorado State Bill 18-086. The views expressed in this paper are those
of the authors and do not reflect the official policy or position of the United
States Military Academy, the United States Army, the Department of Defense,
or the United States Government.

extracted from memory and the file system [7]. Many of these
forensics approaches are difficult to assess, as analysts either
do not collect the proper logs, or do not have the expertise to
properly analyze memory and file system data.

In this paper, we propose a Windows malware classification
approach for cases where the original malware is unavailable.
We leverage a Windows loader generated forensic artifact
known as the Windows prefetch file. Prefetch files are created
by the Windows Operating System after the first execution
of an application and persist after an application is deleted.
The intent of the prefetch file is to improve the performance
of successive executions of the application by preloading
dependencies such as dynamically linked libraries (DLLs), but
the resource has been used for other purposes. For example,
in digital forensics, prefetch files have traditionally been used
as evidentiary artifacts of program execution [7]. Our work
expands upon this practice to extract a feature set based on the
libraries loaded by the malware during execution left behind in
the prefetch file. A program’s loaded libraries exposes insight
into the program’s behavior. As such, the prefetch feature set
provides semantically valuable information for use in malware
classification. One benefit of using this mechanism is that
by default, it is enabled on all modern Window platforms;
therefore, it is automatically available to the security analyst
without being managed.

Our research focuses on malware classification to associate
unknown malware with existing families. We do so using
two approaches that use the prefetch feature set as input: an
approach based on Jaccard similarity, and a technique based on
a traditional machine learning ensemble classifier. Classifying
malware into a known family encapsulates the malware’s
underlying behavior. As such, every malware instance in the
family shares a common subset of semantics. For example,
classifying a sample as WannaCry ransomware informs one
that the sample exhibits behavior representative of WannaCry,
e.g., file encryption and propagation via Server Message Block
vulnerabilities [6]. If a common feature is removed from
this subset, the malware’s semantics are degraded because it
fundamentally changes the behavior of the malware [16]. This
is akin to a monotonic increase constraint, where the feature
set of a variant may increase (i.e., features added), but the
shared features common to the family cannot be removed [9]
due to loss of functionality. We define the enforcement of a
minimum feature space in malware classification as a semantic
preservation constraint.

We propose a set-theoretic approach to enforcing seman-
tic preservation constraints in malware classification using a

prefetch feature set. Specifically, we extend Jaccard similarity
such that the association with a family is penalized if an
unknown malware does not contain the minimum features
representative of the family. This technique has the added
benefit of a fast filter that can quickly provide a reduced list
of prospective malware families that meet the semantic preser-
vation constraints. When evaluated using a dataset of malware
from 48 families, our similarity-based classifier provides better
performance over an ensemble classifier.

This paper makes the following contributions. First, we
propose a feature set based on the Windows prefetch mecha-
nism for malware family classification when a malware sample
is not available; second, we describe an approach to enforce
semantic preservation constraints in the feature set.

II. BACKGROUND AND RELATED WORK

We now present related work on feature selection for
malware classification, describe why malware self-deletion
complicates such efforts, and present a technical overview of
the Windows prefetch mechanism.

Malware Families. Malware classification can be used to
associate malware with a known family. A malware family
describes a grouping of malware that exhibit similar behavior
to achieve similar effects. A family can describe commodity
malware (e.g., njRat), or proprietary malware from an ad-
vanced persistent threat (e.g., BlackEnergy). Family classifi-
cation exposes critical malware intelligence, informing post-
attack decision making. For example, if a malware is classified
as EternalRocks, then analysts know to hunt for suspicious
Server Message Block traffic and scheduled tasks to detect
and prevent successive EternalRocks activities.

Malware classification has been studied extensively in
the past, with dynamic features known to provide the best
classification performance. Dynamic features are extracted
during program execution. Such features can include API
call and system call information [3], [5], [14], function call
graphs [17], or behavioral features such as resource interac-
tions and mutexes [10], [13], [20]. Although dynamic features
can overcome the limitations of static features, they require
extensive feature extraction processes. Further, both static and
dynamic techniques require access to the original malware.

Forensic techniques do not require an executable. Memory
forensics has been shown to produce artifacts from process
memory useful for clustering similar malware [11]; however,
memory extraction is costly, and requires use of special
tools and domain knowledge. Further, the Operating System
reclaims memory after a process terminates, requiring analysts
to extract memory while the process is running. Network
forensics can be used to classify malware using network
logs and packet analysis [19], while traffic pattern analysis
can expose malware network behavior [12]; however, not all
malware creates a network footprint and full packet capture
for storage is impractical.

Malware Self-Deletion Behavior. Malware can delete
itself after execution to evade detection and frustrate analysis.
To estimate the pervasiveness of such behavior, we queried
the MITRE ATT&CK framework [1] repository for threat
actors and malware campaigns that are known to deploy self-
deletion behavior. Our result shows that 29.8% of threat actors

and 33.7% of malware campaigns have utilized self-deletion,
suggesting that we cannot count on having malware available
after an attack.

Prefetch Files. Our approach leverages the Windows
prefetch file, a file system forensic artifact commonly used
as evidence of program execution [7]. Prefetch files are used
by the Windows OS to improve application start-up perfor-
mance by loading application data into memory before it
is demanded [18]. The OS loader generates these files for
all recently executed applications. It monitors the references
made by each process, such as DLLs, language and font files,
child processes, etc., during load time (i.e., process startup)
and the first ten seconds of runtime (i.e., process execution).
The Windows superfetch service maps these references to the
application’s prefetch file. When the application is launched
again, the loader checks the prefetch file to preload all the
dependencies. Prefetch files have been utilized in malware
detection [4], i.e., a binary classification. By contrast, we use
the prefetch files to classify malware samples into a number
of different families.

III. APPROACH

In this work, we consider a self-deleting malware and
focus on residual forensic artifacts to find features suitable
for malware family classification. More specifically, our ap-
proach extracts features from Windows loader prefetch files,
which persist after program deletion. Further, we apply a
novel set-theoretic technique to enforce semantic preservation
constraints on the features. Our constraints serve as a filter to
yield a list of prospective malware families associated with the
unknown malware.

A. Feature Extraction and Preprocessing

To collect features, a program is executed and its depen-
dency list is extracted from the Windows’ prefetch file. Prelim-
inary analysis on our dataset (Section IV-A) revealed common
DLLs that exist in every malware’s prefetch feature set:
ntdll.dll, kernel32.dll, and kernalbase.dll.
These DLLs were filtered from the feature sets because
they provide no semantically meaningful information. All
applications load these DLLs to interface with the Win-
dows OS. Further, a program’s bitness (i.e., 32-bit ver-
sus 64-bit) is exposed in the prefetch file through the
presence of Windows-on-Windows (WoW) subsystem DLLs:
wow64.dll, wow64win.dll, and wow64cpu.dll. WoW
enables a 32-bit process to execute on a 64-bit operating sys-
tem. Since bitness is a byproduct of the underlying architecture
and not consequential for program semantics, the WoW DLLs
were removed from the feature set.

B. Malware Classification using Jaccard Similarity

In order to classify malware into families, we want to
measure the similarity of feature sets between samples. To
do so, we use Jaccard similarity (JS), which measures the
overlap of two sets into a score between 0 (no similarity) and 1
(exact match) and is calculated as follows. JS(A,B) = |A∩B|

|A∪B| .
Unfortunately, a naive JS score does not guarantee a minimum
feature space for malware classification (i.e., the semantic
preservation constraint) [9].

2

Unknown x

imm32.dll
user32.dll
shell32.dll
ole32.dll
cfgmgr32.dll
crypt32.dll
cryptbase.dll

z

cfgmgr32.dll
crypt32.dll
cryptbase.dll

miny

imm32.dll
user32.dll
shell32.dll
ole32.dll
ws_32.dll

min

Fig. 1. Example Feature Sets.

Each malware within a family shares a common subset
of semantics. We can represent this subset as a minimum
feature set, or the intersection of all feature sets within the
same family. This follows the intuition of a monotonic increase
constraint for malware features [9]. Such constraints enforce
the assumption that removing core features degrade program
semantics. To show that Jaccard does not enforce constraints
on set similarity consider an unknown malware’s feature set, x.
We want to assess the similarity of x with two known families,
y and z. The minimum feature set for family y is represented as
ymin =

⋂n
i=1 yi, and is the intersection of features across each

instance yi, while n is the total number of malware instances in
family y; zmin for family z is computed similarly. The feature
sets for x, ymin, and zmin are represented in Figure 1.

Here, Jaccard(x, ymin) > Jaccard(x, zmin), suggesting that
x may belong to family y. However, as shown in Figure 1,
ws_32.dll /∈ x because x lacks Winsock TCP/IP network-
ing functionality, which is one of the minimum semantic
features associated with family y. By contrast, x ⊃ zmin,
suggesting that x inherits the minimum semantic features of
z. Therefore, we extend Jaccard similarity with a semantic
preservation constraint.

1) Semantic Preservation Filter: We propose a set-
theoretic approach to filtering the predicted family labels based
on the intuition that malware families have a common subset
of features. We name this the semantic preservation filter.
Given the prefetch feature set of an unknown malware sample,
the filter first yields a set of prospects that include malware
families that meet the semantic preservation constraint. A
classifier can then produce a prediction, which is the family
that has the highest average similarity score with the unknown
malware among the prospects.

Let Y be the set of malware families. For each malware
family y ∈ Y , we find three feature-related signatures: the
intersection of all features (ymin =

⋂n
i=1 yi, where n is the

number of malware samples in y), the union of all features
(ymax =

⋃n
i=1 yi), and the symmetric difference of the two

(ymin4ymax). If x is the set of features from an unknown
malware instance, we first verify if x is a proper superset of
ymin. If not, we disregard y as a prospective family because
it violates semantic preservation. We also enforce a maximum
constraint to ensure x does not contain excessive features not
associated with a candidate family. Therefore, we check if the
symmetric difference between x and ymin is a subset of the
symmetric difference of ymin and ymax. If not, we disregard y
because the feature set of x contains features not representative
of the variance of family y. This approach yields a set Z of
prospective families where |Z| << |Y |, filtering the search
space for malware family classification. From Z, the family
with the highest average pairwise Jaccard similarity with the
unknown malware sample is predicted to be the family. The
process is defined in Algorithm 1.

Algorithm 1: Family Classification.
/* Initializing variables */
x : feature set from unknown sample
Y : set of malware families, y ∈ Y
ymax =

⋃n

i=1
yi

ymin =
⋂n

i=1
yi

Z = {} // Z is the set of prospects

/* Use semantic preservation filter to find prospects for x */
for y in Y do

if (x ⊃ ymin) and (x4 ymin) ⊂ (ymin4ymax) then
Z.append(y);

end
end

/* Find z ∈ Z with the largest mean Jaccard similarity */

Prediction = max
{

|x∩z|
|x∪z| , z ∈ Z

}

Prospects: [Ziyang, Bifrose, PotaoExpr, BeepService]
Prediction: Ziyang

Fig. 2. Sample output.

IV. EVALUATION

We now describe the dataset (Section IV-A), then present
our preliminary results (Section IV-B).

A. Dataset

Our dataset contains 4,126 malware samples from 48 mal-
ware families. The families capture a variety of malware be-
havior, including cyber espionage (Duqu 2.0), proxy-enabling
click fraud (Nodersok), and self-propagating worms that install
backdoors (EternalRocks). We executed each sample in a Win-
dows 10 virtual machine and extracted their prefetch feature
sets. The dataset was split into two: 75% used for training,
and 25% used for testing.1 The training set was used to find
the ymin and ymax sets for each family.

B. Results

In this section, we first discuss our list of prospects from
the semantic preservation filter, then present an analysis of our
findings.

Semantic Preservation Constraints. We reduce the mal-
ware family search space by identifying prospect families.
During testing, we found that the correct malware family
was in the list of prospects 100% of the time. This filtered
the original search space from 48 families to no more than
14 families. In some instances, the filter only yielded one
prospect, in which case the need for further analysis is not
required. An example is shown in Figure 2.

Analysis. After the semantic preservation filter yields a
list of prospective families, the unknown malware is classified
into the family from the list with the highest pairwise Jaccard
similarity score. We analyze our results using F-Score, which

1We split the dataset based on compile stamps such that only the testing set
contains the more recent variants from each family. This split avoids temporal
bias [15], where a classifier is leaked future knowledge during training.

3

is the harmonic mean of precision (p) and recall (r) such that
Fscore =

2∗p∗r
p+r .

Our similarity-based classifier from Algorithm 1 provides
an F-Score of 0.82. For comparison, we designed a traditional
ensemble classifier using the prefetch features. The ensemble
classifier uses a combination of popular machine learning
algorithms (K-nearest-neighbor (KNN) and random forests
(RF)). In addition to a slight performance hit (Fscore = 0.80),
the machine learning classifier does not guarantee semantic
preservation. Further, a machine learning approach requires
additional feature preprocessing to vectorize the feature space,
and overhead in extending the training dataset. If a new family
is added to a dataset, the approach from Algorithm 1 only
needs to calculate a few simple set operations to obtain ymin,
ymax, and the symmetric difference of the two. By contrast,
the machine learning classifier approach requires retraining
the entire model, which is a time consuming process. Our
similarity-based approach offers more flexibility, and can be
used with or without a malware sample, making it a valuable
forensic tool.

V. CONCLUSIONS

This work proposes an approach to Windows malware
family classification when a malware sample is unavailable.
By extracting malware loaded library events from Windows’
prefetch files, we obtained dependency information that can
be used to build a similarity-based malware family classifier.
Our results show that these features can be used to classify
malware into families with high accuracy.

REFERENCES

[1] ATT&CK. https://attack.mitre.org/.
[2] APT29. https://attack.mitre.org/groups/G0016/, 2021.
[3] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari. Malware detection

by behavioural sequential patterns. Computer Fraud & Security, 2013.
[4] B. Alsulami, A. Srinivasan, H. Dong, and S. Mancoridis. Lightweight

behavioral malware detection for windows platforms. In 12th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE).
IEEE, 2017.

[5] R. Canzanese, S. Mancoridis, and M. Kam. Run-time classification
of malicious processes using system call analysis. In 10th IEEE
Conference on Malicious and Unwanted Software (MALWARE), 2015.

[6] Q. Chen and R. A. Bridges. Automated behavioral analysis of
malware: A case study of wannacry ransomware. In 16th International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2017.

[7] A. Dimitriadis, N. Ivezic, B. Kulvatunyou, and I. Mavridis. D4i-digital
forensics framework for reviewing and investigating cyber attacks.
Array, 2020.

[8] V. S. Harichandran, D. Walnycky, I. Baggili, and F. Breitinger. Cufa:
A more formal definition for digital forensic artifacts. Digital Investi-
gation, 2016.

[9] Í. Íncer Romeo, M. Theodorides, S. Afroz, and D. Wagner. Adver-
sarially robust malware detection using monotonic classification. In
4th ACM International Workshop on Security and Privacy Analytics
(IWSPA), 2018.

[10] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna.
Neurlux: dynamic malware analysis without feature engineering. In 35th
ACM Annual Computer Security Applications Conference (ACSAC),
2019.

[11] M. A. Kumara and C. Jaidhar. Leveraging virtual machine introspection
with memory forensics to detect and characterize unknown malware
using machine learning techniques at hypervisor. Digital Investigation,
2017.

[12] K. Makhlouf. Finding a needle in a haystack: The traffic analysis
version. Proceedings on Privacy Enhancing Technologies, 2019.

[13] R. Mosli, R. Li, B. Yuan, and Y. Pan. A behavior-based approach
for malware detection. In IFIP International Conference on Digital
Forensics. Springer, 2017.

[14] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas.
Malware classification with recurrent networks. In 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[15] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating experimental bias in malware classification
across space and time. In 28th USENIX Security Symposium, 2019.

[16] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing
properties of adversarial ml attacks in the problem space. In 41st IEEE
Symposium on Security and Privacy (S&P), 2020.

[17] C. Puodzius, O. Zendra, A. Heuser, and L. Noureddine. Accurate and
robust malware analysis through similarity of external calls dependency
graphs (ecdg). In The 16th International Conference on Availability,
Reliability and Security, 2021.

[18] N. Shashidhar and D. Novak. Digital forensic analysis on prefetch files.
International Journal of Information Security Science, 2015.

[19] L. F. Sikos. Packet analysis for network forensics: A comprehensive
survey. Forensic Science International: Digital Investigation, 2020.

[20] J. Stiborek, T. Pevnỳ, and M. Rehák. Multiple instance learning for
malware classification. Expert Systems with Applications, 2018.

[21] D. Ucci, L. Aniello, and R. Baldoni. Survey of machine learning
techniques for malware analysis. Computers & Security, 2019.

[22] J. Upchurch and X. Zhou. Malware provenance: Code reuse detection
in malicious software at scale. In 11th IEEE Conference on Malicious
and Unwanted Software (MALWARE), 2016.

[23] G. D. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. D. Hanif,
A. Zarras, and C. Eckert. Finding the Needle: A Study of the PE32
Rich Header and Respective Malware Triage. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA). 2017.

[24] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar. A survey on malware
detection using data mining techniques. ACM Computing Surveys
(CSUR), 2017.

4

